Expresiones Algebraicas Racionales

Llamaremos expresiones algebraicas racionales a las de la forma \(\frac{A(x)}{B(x)} \) donde A(x) y B(x) son polinomios de variable x, y B(x) ≠ 0.

Por ejemplo, \(\frac{7}{x-2} \) es una expresión algebraica racional porque el numerador A(x) = 7 es un polinomio y el denominador B(x) = x – 2 también es un polinomio.

También es una expresión algebraica racional \(\frac{x^3 - 2x + \sqrt{3}}{x^2 + 7x} \).

¿Es \(\frac{x^5 + 3x^3}{\sqrt{x} - 3} \) una expresión algebraica racional?……

La expresión \(x^2 - 9 \) es también racional porque \(x^2 - 9 \) es un polinomio y 1, su denominador, también lo es.

Simplificación de expresiones racionales

Recordamos que, dado el racional \(\frac{2}{3} \) podemos hallar otros equivalentes con él: \(\frac{2}{3} = \frac{4}{6} = \frac{14}{21} = ... \)

donde \(\frac{a}{b} = \frac{a \cdot n}{b \cdot n} \) con \(n ≠ 0 \).

Análogamente para la expresión racional \(\frac{A(x)}{B(x)} \) pueden hallarse expresiones racionales equivalentes: \(\frac{A(x)}{B(x)} = \frac{A(x) \cdot N(x)}{B(x) \cdot N(x)} \) siendo N(x) cualquier polinomio no nulo.

En Z muchas veces se nos presenta el problema de encontrar la fracción equivalente más simple que una dada. Por ejemplo, \(\frac{77}{132} = \frac{7 \cdot 11}{22 \cdot 3 \cdot 11} = \frac{7}{12} \)

También es posible simplificar expresiones algebraicas racionales cuando existen factores comunes al numerador y al denominador, de lo contrario la expresión racional es irreducible.

Consideremos \(\frac{x^2 - 1}{x^3 + 3x^2 - x - 3} \). Factorizamos su numerador y su denominador:

\(x^2 - 1 = (x + 1)(x - 1) \)

\(x^3 + 3x^2 - x - 3 = x^2(x + 3) - (x + 3) = (x + 3)(x^2 - 1) = (x + 3)(x + 1)(x - 1) \)

Entonces \(\frac{x^2 - 1}{x^3 + 3x^2 - x - 3} = \frac{(x + 1)(x - 1)}{(x + 3)(x + 1)(x - 1)} = \frac{1}{x + 3} \) \(\text{si } x ≠ 1 \ y \ x ≠ -1 \)

Las dos expresiones racionales, \(\frac{x^2 - 1}{x^3 + 3x^2 - x - 3} \) y \(\frac{1}{x + 3} \) son equivalentes para \(x ≠ 1 \ y \ x ≠ -1 \).
La expresión final es equivalente a la dada para todo valor de \(x \) que no anule el factor cancelado porque ello equivaldría a dividir por cero.

Veamos otros ejemplos:

I) \[
\frac{3x^3 - 12x}{x^2 - 4x + 4} = \frac{3x(x^2 - 4)}{(x - 2)^2} = \frac{3x(x + 2)(x - 2)}{(x - 2)(x + 2)} = \frac{3x}{x - 2} \quad \text{si } x \neq 2
\]

II) \[
\frac{x^2 + 5}{x^4 - 25} = \frac{x^2 + 5}{(x^2 + 5)(x^2 - 5)} = \frac{1}{x^2 - 5} \quad \forall \ x \in \mathbb{R}
\]
¿Por qué esta expresión es válida para cualquier número real?

Actividad N°1

Simplificar, indicando para qué valores de \(x \) la expresión resultante es equivalente a la dada.

a) \[
\frac{2x - 6}{x^2 - 6x + 9}
\]

b) \[
\frac{x^2 + x}{x + 1}
\]

c) \[
\frac{x^3 - 49x}{x^3 - 14x^2 + 49x}
\]

d) \[
\frac{x^2 - x - 6}{x^2 + 3x + 2}
\]

Operaciones con Expresiones Algebraicas Racionales

Para operar con expresiones racionales, aplicamos las mismas propiedades y técnicas que para operar con fracciones numéricas.

Adición y Sustracción

Recordamos que para sumar \(\frac{3}{14} + \frac{1}{21} \) necesitamos hallar fracciones equivalentes a los sumandos, de igual denominador:

\[
\frac{3}{14} + \frac{1}{21} = \frac{3}{2 \cdot 7} + \frac{1 \cdot 7}{2 \cdot 7} = \frac{3 \cdot 1 + 2}{2 \cdot 7} = \frac{11}{42}.
\]

Para sumar (o restar) expresiones racionales de distinto denominador, debemos sumar (o restar) expresiones equivalentes a ellas que tengan el mismo denominador. Para hallarlo, factorizamos los denominadores y luego multiplicamos los factores comunes y no comunes con el mayor exponente con el que figura (mínimo común múltiplo).

Veamos el siguiente ejemplo:

\[
\frac{2}{3x^2 - 6x + 3} + \frac{x}{x^2 + 3x - 4}
\]

Factorizamos los denominadores:

\[
\frac{2}{3(x^2 - 2x + 1)} + \frac{x}{(x - 1)(x + 4)} = \frac{2}{3(x - 1)^2} + \frac{x}{(x - 1)(x + 4)}
\]

Buscamos expresiones equivalentes con igual denominador:

\[
\frac{2(x + 4)}{3(x - 1)^2(x + 4)} + \frac{x \cdot 3(x - 1)}{3(x - 1)^2(x + 4)}
\]

Operamos en el numerador y sumamos:

\[
\frac{2x + 8 + 3x^2 - 3x}{3(x - 1)^2(x + 4)} = \frac{3x^2 - x + 8}{3(x - 1)^2(x + 4)}
\]

El numerador no tiene raíces reales, por lo tanto la expresión obtenida es irreducible.
Expresiones Algebraicas Racionales

Vamos a calcular \[\frac{x - 10}{x^2 + 3x - 10} - \frac{2x + 4}{x^2 - 4} \]

Factorizamos los denominadores:

\[\frac{x - 10}{(x - 2)(x + 5)} - \frac{2x + 4}{(x + 2)(x - 2)} = \]

Elegimos un denominador común y hallamos las expresiones equivalentes:

\[2 = \frac{(x - 10)(x + 2)}{(x - 2)(x + 5)(x + 2)} - \frac{(2x + 4)(x + 5)}{(x - 2)(x + 5)(x + 2)} = \]

Aplicamos propiedades y restamos:

\[\frac{x^2 + 2x - 10x - 20}{(x - 2)(x + 5)(x + 2)} - \frac{2x^2 + 10x + 4x + 20}{(x - 2)(x + 5)(x + 2)} = \]

\[\frac{x^2 - 8x - 20 - 2x^2 - 14x - 20}{(x - 2)(x + 5)(x + 2)} = \frac{-x^2 - 22x - 40}{(x - 2)(x + 5)(x + 2)} = \frac{-(x + 20)}{(x - 2)(x + 5)(x + 2)} = \]

La suma de expresiones algebraicas racionales es asociativa, conmutativa, cumple la ley de cierre y posee elemento neutro: 0. Recordemos que restar es sumar el opuesto.

Actividad Nº2

Calcular: a) \[\frac{2}{x^2 - 9} + \frac{x + 1}{x^2 + 6x + 9} - \frac{1}{3-x} = \] b) \[\frac{x + 5}{x^2 - 25} + \frac{x + 2}{2x^2 - 6x - 20} - \frac{21}{2x + 2} = \] c) \[\frac{1}{(x - 1)^2} - \frac{2}{x^2 - 1} + \frac{1}{(x + 1)^2} = \]

Multiplicación

Para multiplicar dos expresiones racionales \[\frac{A(x)}{B(x)} \cdot \frac{C(x)}{D(x)} \], procedemos así:

\[\frac{A(x) \cdot C(x)}{B(x) \cdot D(x)} = \]

Por ejemplo: I) \[\frac{2x + 1}{x - 3} \cdot \frac{3x}{x + 1} = \frac{(2x + 1)3x}{(x - 3)(x + 1)} = \frac{6x^2 + 3x}{x^2 - 2x - 3} \]

II) Calculamos ahora \[-\frac{x^2 + 4x}{x^2 - 9} \cdot \frac{5x + 15}{x^3 - 4x^2} = \]

Factorizamos cada uno de los polinomios:

\[\frac{-x(x - 4)(5x + 15)}{(x + 3)(x - 3)x^2(x - 4)} = \]

Simplificamos y obtenemos el resultado: \[\frac{-5}{x(x - 3)} \] si \(x \neq 4 \) y \(x \neq -3 \).

La multiplicación de expresiones algebraicas racionales cumple con la ley de cierre, es asociativa, conmutativa, tiene elemento neutro (1) y es distributiva respecto de la suma y la resta.

¿Existe inverso multiplicativo para toda expresión \[\frac{A(x)}{B(x)} \]?
Expresiones Algebraicas Racionales

Actividad Nº 3:
Resolver:
\[a) \frac{x^2 - 4x + 4}{2x} \cdot \frac{6x - 12}{x^3 - 6x^2 + 12x - 8} \quad b) \frac{(x^3 + 1)}{x^2 - x + 1} \cdot \frac{1}{x^2 + 2x + 1} \]

División
Se llama inverso multiplicativo de una expresión algebraica racional \(\frac{A(x)}{B(x)} \) a la expresión \(\frac{B(x)}{A(x)} \), si A es no nulo.

Para dividir dos expresiones algebraicas racionales \(\frac{A(x)}{B(x)} \) y \(\frac{C(x)}{D(x)} \) operamos igual que en el conjunto \(\mathbb{Q} \):
\[\frac{A(x)}{B(x)} \cdot \frac{C(x)}{D(x)} = \frac{A(x) \cdot C(x)}{B(x) \cdot D(x)} \text{ con } C(x) \neq 0 \]
Por ejemplo:
\[\frac{x - 1}{3 - x} : \frac{2x}{x + 2} = \frac{(x - 1)(x + 2)}{(3 - x)2x} = \frac{x^2 + x - 2}{6x - 2x^2} \]

Actividad Nº 4

1) Con las expresiones \(P(x) = \frac{2x + 4}{x^2 - 9} \) y \(T(x) = \frac{x + 3}{x^2 - x - 6} \) calcular:
 a) \(P(x) \cdot T(x) \) \quad b) \(P(x) : T(x) \) \quad c) \(T(x) : P(x) \).

2) Resolver:
 a) \(\frac{x^2 - 4}{x^2 - 9} : \frac{x^4 - 16}{x + 3} \) \quad b) \(\frac{5x + 10}{x^2 - 1} : \frac{3x + 6}{x + 1} \) \quad c) \(\left(\frac{x + 4}{x^2 - 1} \cdot \frac{-x + 1}{x^2 + 1} \right) : \frac{-x^2 - 3x + 4}{x^4 - 1} \)

Actividad Nº 5

Efectuar los siguientes ejercicios combinados:

a) \(\left(\frac{x - 2}{x^2 + 4} + \frac{x + 2}{x^2 - x - 6} \right) : \frac{x^2 - 9}{4x - 10} \)

b) \(\left(\frac{1}{x + 2} - \frac{1}{x - 2} \right) : \frac{4}{x^2 - 4} \)

c) \(\frac{1}{x + 2} - \frac{1}{x - 2} : \frac{4}{x^2 - 4} \)

d) \((x^3 - x) : \left(\frac{1}{x} - 1 \right) \)
EJERCICIOS DE EXPRESIONES ALGEBRAICAS RACIONALES

Realizar las siguientes operaciones, simplificando los resultados cuando sea posible:

a) \(\frac{-x^2}{x^2 + 1} + \frac{x^4 + 1}{x^4 - 1} \)

b) \(\frac{1}{3} \frac{x + 1}{x^3 + x^2} + \frac{x^2 + 2x + 1}{x(x + 1)^2} \)

c) \(\frac{x^2 - x - 6}{x^3 + x} \div \frac{-x - 2}{x^4 - 1} \)

d) \(\frac{2x + 6}{x^2 - 9} + \frac{x}{x - 7} \div \frac{x}{x + 7} \div \frac{x - 7}{5} \)

e) \(\frac{1}{x - 3} + \frac{2}{(x - 3)^2} - \frac{1}{x^2 - 9} \)

f) \(\left[\frac{2x^2 + 1}{3x^2} - \frac{2x + 1}{4x^2 - 1} \right] \div \frac{(2x - 1)^2}{3x} \div \frac{x^2 + 2x + 1}{9x^3} \)

g) \(\left(\frac{x + \frac{x}{x-1}}{x - \frac{x}{x-1}} \right) \left(x - \frac{x}{x-1} \right) \)